Строение сердца рыб и их кровь

Какая кровь проходит через сердце рыбы?

PDF Button

Как выглядит сердце рыбы.Сердце рыбы щуки фото.Есть ли у рыбы сердце, конечно есть.Фото рыбы щуки с сердцем.Кровь в сердце рыб проходит также как и у других обеспечивая органы всем для жизни не обходимым.Сколько сердец у рыбы, речной только одно.

Где у рыбы сердце, в районе гортани и у щуки оно продолжает биться не которое время даже после того как будет извлечено из рыбы.Какая кровь в сердце рыб, кровь в сердце рыбы щуки такого же красного цвета которая заметно темнеет при чистке.Фото кровь в сердце рыбы.Полезные рыбы для сердца практически все речные, только размеры самого сердца слишком малы для употребления в гастрономических целях.

Эта запись была размещена в рыбы автор Vladimir Veselov (постоянная ссылка).

Кровь выполняет многочисленные функции только тогда, когда движется по сосудам. Обмен веществ между кровью и другими тканями организма происходит в капиллярной сети. Отличаясь большой протяженностью и разветвленностью, она оказывает большое сопротивление току крови. Давление, необходимое для преодоления сопротивления сосудов, создается в основном сердцем, Строение сердца рыб проще, чем высших позвоночных. Производительность сердца у рыб как нагнетательного насоса значительно ниже, чем у наземных животных.

Тем не менее оно справляется со своими задачами. Водная среда создает благоприятные условия для работы сердца. Если у наземных животных значительная часть работы сердца затрачивается на преодоление сил гравитации, вертикальные перемещения крови, то у рыб плотная водная среда существенно нивелирует гравитационные влияния.

Вытянутое в горизонтальном направлении тело, небольшой объем крови, наличие только одного крута кровообращения дополнительно облегчают функции сердца у рыб.

Строение сердца рыб

Сердце у рыб небольшое, составляющее примерно 0,1% массы тела. Из этого правила, конечно, есть исключения. Например, у летучих рыб масса сердца достигает 2,5 % массы тела.

Для всех рыб характерно двухкамерное сердце. Вместе с тем существуют видовые различия в строении этого органа.

В обобщенном виде можно представить две схемы строения сердца в классе рыб. И в первом, и во втором случае выделяют 4 полости: венозный синус, предсердие, желудочек и образование, отдаленно напоминающее дугу аорты у теплокровных, — артериальную луковицу у костистых и артериальный конус у пластинчатожаберных (рис, 7.1). Принципиальное различие этих схем заключено в морфофункциональных особенностях желудочков и артериальных образований.

А вы читали?  Почему кошка расчесывает кожу до крови и как ей помочь?

У костистых артериальная луковица представлена фиброзной тканью с губчатым строением внутреннего слоя, но без клапанов.

У пластинчатожаберных артериальный конус помимо фиброзной ткани содержит и типичную сердечную мышечную ткань, поэтому обладает сократимостью.

Конус имеет систему клапанов, облегчающих одностороннее продвижение крови через сердце.

Рис. 7.1. Схема строения сердца рыб

В желудочке сердца рыб обнаружены различия в структуре миокарда.

Строение сердца рыб и их кровь

Принято считать, что миокард рыб специфичен и представлен однородной сердечной тканью, равномерно пронизанной трабекулами и капиллярами. Диаметр мышечных волокон у рыб меньше, чем у теплокровных, и составляет 6-7 мкм, что вдвое меньше по сравнению, например, с миокардом собаки. Такой миокард называют губчатым.

Сообщения о васкуляризации миокарда рыб довольно запутанны. Миокард снабжается венозной кровью из трабекулярных полостей, которые, в свою очередь, заполняются кровью из желудочка через сосуды Тибезия (Thebesian vessels). В классическом понимании у рыб нет коронарного кровообращения. По крайней мере, медики-кардиологи придерживаются такой точки зрения. Однако в литературе по ихтиологии термин “коронарное кровообращение рыб” встречается часто.

В последние годы исследователи обнаружили много вариаций васкуляризации миокарда. Например, С. Agnisola et. al (1994) сообщает о наличии двуслойного миокарда у форели и электрического ската. Со стороны эндокарда лежит губчатый слой, а над ним слой миокардиальных волокон с компактным упорядоченным расположением.

Исследования показали, что губчатый слой миокарда обеспечивается венозной кровью из трабекулярных лакун, а компактный слой получает артериальную кровь по гипобронхиальным артериям второй пары жаберных дут.

У elasmobranchs коронарное кровообращение отличается тем, что артериальная кровь из гипобронхиальных артерий доходит до губчатого слоя по хорошо развитой системе капилляров и попадает в полость желудочка по сосудам Тибезия.

Еще одно существенное различие костистых и пластинчатожаберных заключается в морфологии перикарда.

У костистых перикард напоминает таковой наземных животных. Он представлен тонкой оболочкой.

У пластинчатожаберных перикард образован хрящевой тканью поэтому он представляет собой как бы жесткую, но упругую капсулу.

В последнем случае в период диастолы в перикардиальном пространстве создается некоторое разрежение, что облегчает кровенаполнение венозного синуса и предсердия без дополнительных затрат энергии.

Электрические свойства сердца рыб

Строение миоцитов сердечной мышцы рыб сходно с таковым высших позвоночных.

А вы читали?  Метиленовый Синий для аквариума

Поэтому и электрические свойства сердца похожи. Потенциал покоя миоцитов у костистых и пластинчатожаберных составляет 70 мВ, у миксин — 50 мВ. На пике потенциала действия регистрируется изменение знака и величины потенциала с минус 50 мВ до плюс 15 мВ. Деполяризация мембраны миоцита приводит к возбуждению натрий-кальциевых каналов.

Эта фаза у рыб значительно продолжительнее — около 0,15 с.

Следующая за этим активизация калиевых каналов и выход ионов калия из клетки обеспечивают быструю реполяризацию мембраны миоцита.

В свою очередь, реполяризация мембраны закрывает калиевые и открывает натриевые каналы. В итоге потенциал клеточной мембраны возвращается к исходному уровню минус 50 мВ.

Миоциты сердца рыбы, способные к генерации потенциала, локализованы в определенных участках сердца, которые совокупно объединены в “проводящую систему сердца”. Как и у высших позвоночных, у рыб инициирование сердечной систолы происходит в синатриальном узле.

В отличие от других позвоночных у рыб роль пейсмейкеров выполняют все структуры проводящей системы, которая у костистых включает в себя центр ушкового канала, узел в атриовентрикулярной перегородке, от которого к типичным кардиоцитам желудочка тянутся клетки Пуркинье.

Скорость проведения возбуждения по проводящей системе сердца у рыб ниже, чем у млекопитающих, причем в разных участках сердца она неодинакова.

Максимальная скорость распространения потенциала зарегистрирована в структурах желудочка.

Электрокардиограмма рыб напоминает электрокардиограмму человека в отведениях V3 и V4 (рис.

7.2). Однако техника наложений отведений для рыбы не разработана так подробно, как для наземных позвоночных животных.

Рис. 7.2. Электрокардиограмма рыбы

У форели и угря на электрокардиограмме хорошо видны зубцы Р, Q, R, S и Т. Только зубец S выглядит гипертрофированным, а зубец Q неожиданно имеет положительную направленность, у пластинчатожаберных в дополнение к пяти классическим зубцам на электрокардиограмме выявлены зубцы Bd между зубцами S и Т, а также зубец Вг между зубцами Г и .Р.

На электрокардиограмме угря зубцу Р предшествует зубец V. Этиология зубцов такова: зубец Р соответствует возбуждению ушкового канала и сокращению венозного синуса и предсердия; комплекс QRS характеризует возбуждение атриовентрикулярного узла и систолу желудочка; зубец Т возникает в ответ на реполяризацию клеточных мембран сердечного желудочка.

Работа сердца рыб

Сердце рыб работает ритмично.

А вы читали?  Аквариум для разведения раков

Частота сердечных сокращений у рыб зависит от многих факторов.

Частота сердечных сокращений (ударов в минуту) у карпа при 20 °С

Личинка

Молодь массой 0,02 г 80

Сеголетки массой 25 г 40

Двухлетки массой 500 г 30

В опытах in vitro (изолированное перфузированное сердце) частота сердечных сокращений у радужной форели и электрического ската составила 20-40 ударов в минуту.

Из множества факторов наиболее выраженное влияние на частоту сердечных сокращений оказывает температура среды обитания.

Методом телеметрии на морском окуне и камбале была выявлена следующая зависимость (табл. 7.1).

7.1. Зависимость частоты сердечных сокращений от температуры воды

Температура, °С

Частота сердечных сокращений, ударов в минуту

Температура, °С

Частота сердечных сокращений, ударов в минуту
24

11,5

31
26 43
29

https://www.youtube.com/watch?v=4wM40HlUfHY

Установлена видовая чувствительность рыб к перепадам температуры.

Так, у камбалы при повышении температуры воды с g до 12 аС частота сердечных сокращений возрастает в 2 раза (с 24 до 50 ударов в минуту), у окуня — только с 30 до 36 ударов в минуту.

Регуляция сердечных сокращений осуществляется при помощи центральной нервной системы, а также внутрисердечных механизмов.

Как и у теплокровных, у рыб в опытах in vivo при повышении температуры притекающей к сердцу крови наблюдалась тахикардия. Понижение температуры притекающей к сердцу крови вызывало брадикардию. Ваготомия снижала уровень тахикардии. Хронотропным действием обладают и многие гуморальные факторы. Положительный хронотропный эффект получали при введении атропина, адреналина, эптатретина. Отрицательную хронотропию вызывали ацетилхолин, эфедрин, кокаин.

Интересно, что один и тот же гуморальный агент при различной температуре окружающей среды может оказывать прямо противоположное воздействие на сердце рыб.

Так, на изолированном сердце форели при низких температурах (6аС) эпинефрин вызывает положительный хронотропный эффект, а на фоне повышенных температур (15аС) перфузирующей жидкости — отрицательный хронотропный эффект.

Сердечный выброс крови у рыб оценивается в 15-30 мл/кг в минуту. Линейная скорость крови в брюшной аорте составляет 8- 20 см/с.

In vitro на форели установлена зависимость сердечного выброса от давления перфузирующей жидкости и содержания в ней кислорода. Однако в тех же условиях у электрического ската минутный объем не изменялся. В состав перфузата исследователи включают более десятка компонентов.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

Adblock detector