Клонирование домашних животных

✔Развитие клонирования в лаборатории

Ученые очень долго пытались клонировать животных, но многие из ранних попыток ни к чему не привели. Первые довольно успешные результаты были замечены, когда головастиков клонировали из эмбриональных клеток лягушки, с помощью процесса ядерного переноса.

После этого, используя процесс переноса ядер на эмбриональные клетки, ученым удалось произвести клоны млекопитающих. Первым успешным экземпляром клонирования животных стала знаменитая овечка Долли, которая не только выжила, но и смогла воспроизводить потомство естественным способом.

Долли была создана Ианом Уилмутом и его командой в Институте Рослина в Эдинбурге, Шотландия, в 1997 году. В отличие от предыдущих опытов, она не была создана из развивающейся эмбриональной клетки, а из развитой клетки молочной железы, взятой у взрослой овцы.

С тех пор ученые добились успеха в создании множества других видов, таких как крысы, кошки, лошади, быки, свиньи и олени.

Основные сведения

Естественное клонирование животных и растений часто происходит в результате бесполого и вегетативного размножения, а также в результате амейотического партеногенеза.

Искусственное клони́рование живо́тных и расте́ний — новый вид человеческой деятельности, возникший в конце XX-го — начале XXI-го века, состоящий в воспроизведении старых и создании новых биологических организмов, связанных с изучением генома, предполагающий вмешательство в его структуру, нацеленный на решение множества практических задач (кроме научных).

Термины «клон», «клонирование» первоначально использовались в микробиологии и селекции, после — в генетике, в связи с успехами которой и вошли в общее употребление. Надо добавить, что их популяризации в значительной мере способствовали также киноискусство и литература.

Следует иметь в виду, что точное воспроизведение животного или растения как при естественном, так и при искусственном клонировании невозможно. Новый организм в любом случае будет отличаться от материнского за счёт соматических мутаций, эпигенетических изменений наследственного материала, влияния окружающей среды на фенотип и случайных отклонений, возникающих в ходе онтогенеза.

✔Процесс клонирования животных

Первоначальные попытки искусственно вызванного клонирования животных проводились с использованием развивающихся эмбриональных клеток. Ядро ДНК было экстрагировано из эмбриональной клетки и имплантировано в неоплодотворенное яйцо, из которого уже было удалено существующее ядро.

Затем клетки, которые развивались из этого искусственно индуцированного объединения имплантировали в организм суррогатных матерей. Полученное клонированное животное имело генетический состав идентичный генетическому составу исходной клетки.

Сегодня клонирование животных может быть сделано как для репродуктивных, так и для не репродуктивных целей. Во втором случае клонирование выполняется для получения стволовых клеток или других таких клеток, которые могут использоваться в терапевтических целях, например, для заживления или восстановления поврежденных органов, не дублируя весь организм.

Значение

Создание животных и растений с заданными качествами всегда было чрезвычайно заманчивым потому, что это означало создать организмы уникальнейшие и нужнейшие, устойчивые к болезням, климатическим условиям, дающие достаточный приплод, необходимое количество мяса, молока, плодов, овощей и прочих продуктов.

А вы читали?  Ангорский кролик — описание и разновидности пород, срок жизни

Использование технологииклонирования предполагает уникальную возможность получать фенотипически и генетически идентичные организмы, которые могут быть использованы для решения различных теоретических и прикладных задач, стоящих перед биомедициной и сельским хозяйством.

В частности, использование клонирования могло бы способствовать изучению проблемы тотипотентности дифференциированных клеток, развития и старенияорганизмов, злокачественного перерождения клеток.
Благодаря технологии клонирования предполагается появление ускоренной генетической селекции и тиражирования животных с исключительными производственными показателями.

В сочетании с трансгенозом клонирование животных открывает дополнительные возможности для производства ценных биологически активных белков для лечения различных заболеваний животных и человека.
Клонирование животных, возможно, позволит проводить испытания медицинских препаратов на идентичных организмах.

✔Этика клонирования животных

Большинство ученых рассматривают процесс клонирования животных как серьезный прорыв и видят в нем много полезных возможностей, но некоторые считают его «противником природы».

Истина заключается в том, что большая часть широкой общественности не осведомлена о конкретных деталях, связанных с клонированием, и в результате чего возникает множество заблуждений.

В современном мире издано множество законов, запрещающих или регулирующих клонирование по всему миру. В некоторых странах клонирование разрешено, если речь не идёт о клонировании человека. Некоторые адвокатские группы стремятся запретить терапевтическое клонирование, даже если это потенциально может спасти людей от многих изнурительных болезней.

Клонирование растений

Клонирование растений (более общеупотребимы термины «культуры тканей in vitro», «клональное микроразмножение растений») осуществляется путём регенерации целого растения из каллуса путём изменения пропорционального соотношений цитокининов и ауксинов в питательной среде.

Для получения первичного каллуса можно использовать любые клетки и ткани растения (кроме находящихся в премортальном состоянии) ввиду того, что клетки растений способны к дедифференциации при определённых концентрациях фитогормонов в питательной среде.

Но чаще используют для этой цели клетки меристемы ввиду их малой степени дифференциации. В питательную среду для каллусообразования обязательно входят ауксин (для дедифференциации клеток) и цитокинин (для индукции клеточных делений).

После получения каллусной культуры каллус можно разделить и каждую часть использовать для регенерации целых растений. Так как каллус является бесформенной недифференцированной клеточной массой, то для регенерации растения необходимо индуцировать морфогенез путём изменения концентраций фитогормонов в среде.

Клонирование растений позволяет получать безвирусный посадочный материал (при использовании апикальной меристемы как источника клеток), быстрого размножения растений в больших масштабах (в том числе редких и исчезающих), клонирование из пыльников и последующее восстановление диплоидности позволяет получить гомозиготные по всем генам растения, которые можно использовать в дальнейшей селекции.

Также можно культивировать на искусственных питательных средах протопласты растений, из которых в некоторых случаях можно регенерировать целые растения (протопласты удобны для трансгенеза ввиду отсутствия у них клеточной стенки и возможности слияния с другими клетками[1]).

В случае с орхидеями конкретному растению, культивару, может быть дано неформальное название — имя клона, но в том случае, если эта орхидея имеет превосходные качества для данного вида (или гибрида)[2]. Пример: × Laeliocattleya Hsin Buu Lady ‘Red Beauty’.

Клонирование без использования пересадки ядер

В 2009 году была опубликована работа, в которой с помощью метода тетраплоидной комплементации впервые было показано, что индуцированные плюрипотентные стволовые клетки (ИПСК) могут давать полноценный организм, в том числе и его клетки зародышевого пути[12].

А вы читали?  Какие овощи можно собакам и какие давать нельзя

iPS, полученные из фибробластов кожи мышей с помощью трансформации с использованием ретровирусного вектора, в некотором проценте случаев дали здоровых взрослых мышей, которые были способны нормально размножаться.

Таким образом, впервые были получены клонированные животные без примеси генетического материала яйцеклеток (при стандартной процедуре клонирования митохондриальная ДНК передается потомству от яйцеклетки реципиента).

Клонирование с целью воссоздания вымерших видов

Клонирование может быть использовано для воссоздания естественных популяций вымерших животных. Несмотря на наличие определённых проблем и трудностей, первые результаты в данном направлении уже имеются.

В Испании в 2003 году родился клонированный детёныш вымершего подвида пиренейского горного козла букардо (Capra pyrenaica pyrenaica)[13]. Сообщение о клонировании появилось в январском номере журнала «Theriogenology».

Данный подвид пиренейских козлов полностью исчез к 2000 году (причины вымирания точно не известны[14]). Последний представитель вида, самка по имени Селия (Celia), погибла в 2000 году. Но до того (в 1999-м г.

) Хосе Фольк (Jose Folch) из Исследовательского центра сельского хозяйства и технологий Арагона (CITA) взял у Селии несколько клеток кожи с целью анализа и сохранения в жидком азоте. Этот генетический материал был использован в первой попытке клонировать вымерший подвид.

Экспериментаторы переносили ДНК букардо в яйцеклетки домашней козы, лишённые собственного генетического материала. Полученные эмбрионы подсаживали суррогатным матерям — самкам других подвидов испанского козла или гибридных видов, полученных скрещиванием домашних и диких коз.

Таким образом было создано 439 эмбрионов, 57 из которых были имплантированы в суррогатные матки.
Всего семь операций закончилось беременностью и только одна коза, в конце концов, родила самку букардо, умершую спустя семь минут после рождения от проблем с дыхательной системой.

Несмотря на неудачное клонирование и смерть клонированного козлёнка, многие ученые полагают, что такой подход может быть единственным способом спасения видов, стоящих на грани вымирания. Это вселяет в учёных надежду на то, что подвергающиеся опасности и недавно вымершие виды можно будет воскресить с использованием замороженных тканей[15][16].

В 2004 году на свет появилась пара бантенгов (диких быков, обитавших в Юго-Восточной Азии), клонированных из клеток животных, умерших более 20 лет назад. Два бантенга были клонированы из уникального «замороженного зоопарка» Сан-Диего, созданного ещё до того, как люди поняли, что клонирование вообще возможно.

Бантенгов клонировали, перенеся их генетический материал в пустые яйцеклетки обычных домашних коров; из 16 зародышей до рождения дожили только два[17][18].

Императорский дятел

В последний раз императорского дятла видели в Мексике в 1958 году. С тех пор орнитологи пытаются найти следы этой популяции, но безуспешно. Около десяти лет назад появились даже слухи, что птица ещё живёт на планете, но и они не подтвердились.

А вы читали?  Защита собаки от жары - Мастер Пёс

Однако в музеях остались чучела птицы. Научный сотрудник Дарвиновского музея Игорь Фадеев считает, что если операцию по выделению ДНК провести со всеми чучелами, которые находятся в разных странах мира, то дятла можно будет воскресить. В разных музеях мира на сегодняшний день осталось лишь десять чучел императорского дятла.

Если проект увенчается успехом, то в недалеком будущем на нашей планете, возможно, вновь появится императорский дятел. В Государственном Дарвиновском музее уверены, что последние методы молекулярной биологии позволяют выделить и воспроизвести ДНК этих птиц[19].

В июне 2006 года голландские учёные обнаружили на острове Маврикий хорошо сохранившиеся останки дронта — вымершей исторически недавно (в XVII веке) нелетающей птицы. Ранее наука не располагала останками птицы. Но теперь появилась определённая надежда на «воскрешение» этого представителя пернатых[20].

Планы по клонированию исчезнувших гигантских птиц были поставлены под сомнение в результате исследований учёных Оксфордского университета. Выделив участки ДНК из останков вымерших птиц, учёные обнаружили, что их генетический материал настолько разрушен, что современная технология не позволяет провести полноценное клонирование.

Образцы ДНК были взяты из фрагментов тканей, сохранившихся в музеях. Однако учёные не смогли получить достаточную по своей длине цепочку ДНК, чтобы провести клонирование. Тем не менее, некоторые учёные считают, что в ближайшие годы будет разработана технология восстановления утраченных частей ДНК путём вшивания туда «заплат» из ДНК близкородственных видов[21].

Позже исследовательская группа Майкла Бьюнса (Michael Bunce) из университета Мердока (Австралия) разработала эффективный метод извлечения ДНК из скорлупы ископаемых яиц, показавший свою эффективность на скорлупе яиц моа и эпиорниса возрастом до 19 000 лет включительно, что делает планы по клонированию гигантских ископаемых птиц более реалистичными[22][23].

Лаборатория Джорджа Черча (George Church) из Гарвардского университета (США) в середине октября 2014 года объявила о начале проекта по «воскрешению» мамонтов. Шансы на воскрешение мамонтов появились благодаря появлению в 2012 году революционной технологии «перезаписи» генома CRISPR/CAS, которая позволяет точечным образом менять и удалять произвольные гены в ДНК млекопитающих.

Используя эту методику, Черч и его коллеги смогли успешно вставить в геном клеток кожи слона гены, предположительно отвечающие за типичные признаки мамонта — маленькие уши, толстый слой подкожного жира, длинную шерсть и бурый цвет.

В марте 2015 года было объявлено, что американские генетики впервые смогли успешно пересадить часть генов мамонта, извлечённых из фрагментов ДНК гигантов ледникового периода, в геном клетки обычного африканского слона и размножить их.

Таким образом, генетики совершили первый шаг на пути к воскрешению мамонта или к созданию мамонтоподобного слона. (См. также раздел «Возможности клонирования вымерших животных» статьи «Плейстоценовый парк»).

В мае 2015 года в журнале «Current Biology» была опубликована статья о расшифровке генома двух мамонтов[25]. Возможно, новые данные найдут применение при клонировании мамонтов, но пока специалисты не смогут обойтись без яйцеклеток современных слонов[26].

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

Adblock detector